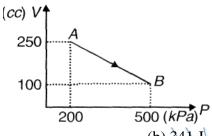





### **DPP - 1 (Thermodynamics)**

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/60


Video Solution on YouTube:-

https://youtu.be/jWXHJMdv-3k

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/78

Q 1. A monoatomic gas is taken along path AB as shown. Calculate change in internal energy of system ?



- (a) 279.8 J
- (c) 241 J

- (b) 341 J
- (d) None of these
- Q 2. Internal energy of ideal diatomic gas at 300 K is 100 J. In this 100 J
  - (a) Potential energy = 0
  - (b) Rotational kinetic energy = 40 J
  - (c) Translational kinetic energy = 60 J
  - (d) Translational kinetic energy = 100 J
- Q 3. The average degrees of freedom per molecule for a gas is 6. The gas performs 25 J of work when it expands at constant pressure. The change in internal energy of gas is
  - (a) 75 J

(b) 100 J

(c) 150 J

- (d) 125 J
- Q 4. One mole of an ideal gas whose pressure changes with volume as  $P = \alpha V$ , where  $\alpha$  is a constant, is expanded so that its volume increases  $\eta$  times. Find change in internal energy in terms of initial volume V and degree of freedom f?
  - (a)  $f\alpha V^2(\eta^2 1)/8$
- (b)  $f\alpha V^2(\eta^2 1)/4$
- (c)  $f\alpha V^2(\eta^2 1)/2$
- (d) None of these
- Q 5. 5 mole of O<sub>2</sub> is heated at constant volume from 10°C to 20°C. What is the change in its internal energy?
  - (a) 250 cal

(b) 200 cal

(c) 100 cal

- (d) 400 cal
- Q 6. The internal energy U of the air in an open room is
  - (a) Higher in day

(b) Higher in night

(c) Equal in day and night

(d) None of the above

Q 7. For an ideal gas,

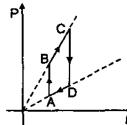


## P hysicsaholics

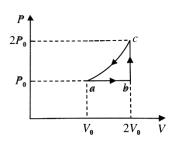


- (a) the change in internal energy in a constant-pressure process from temperature  $T_1$  to  $T_2$  is equal to  $nC_{\nu}(T_2-T_1)$
- (b) the change in internal energy of the gas and the work done by the gas are equal in magnitude in an isobaric process
- (c) the internal energy does not change in an isothermal process
- (d) Change in internal energy in isochoric process from temperature  $T_1$  to  $T_2$  is equal to  $nC_{\nu}(T_2 T_1)$ .
- Q 8. Slope of internal energy vs temperature graph will be highest for
  - (a)  $0_2$

(b)  $H_2$ 


(c)  $NH_3$ 

- (d) He
- Q 9. Volume of a gas is decreased to half of its initial volume. Magnitude of change in internal energy will be minimum in process
  - (a) Isobaric
  - (b) Isothermal
  - (c) Process having equation  $PV^{-1} = constant$
  - (d) Process having equation  $PV^{-2} = \text{constant}$
- Q 10. Relation between U, P and V for ideal gas is U=2+2PV then gas is
  - (a) Mono-atomic


(b) Diatomic

(c) Poly-atomic

- (d) Mixture of mono and diatomic
- Q 11. Pressure versus density graph of an ideal gas is shown in figure:



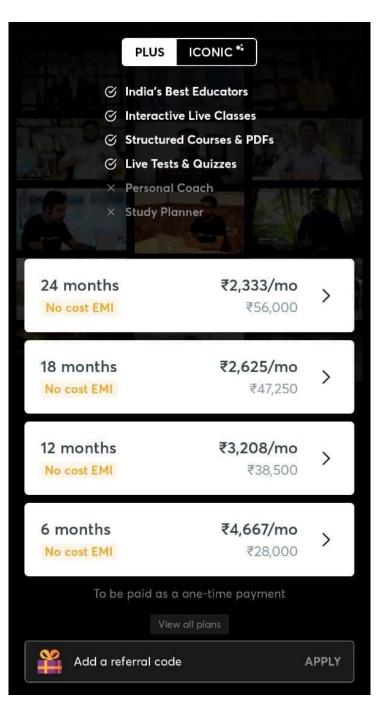
- (a) during the process DA work done by the gas is positive
- (b) during the process DA work done by the gas is negative
- (c) during the process BC Internal energy of the gas is increasing
- (d) none of the above
- Q 12. One mole of an ideal monatomic gas (initial temperature  $T_0$ ) is made to go through the cycle abc a shown in the figure. If U denotes the internal energy, then choose the correct alternatives :



- (a)  $U_c U_a = 10.5 \text{ RT}_0$
- (b)  $U_b U_a = 4.5 \text{ RT}_0$

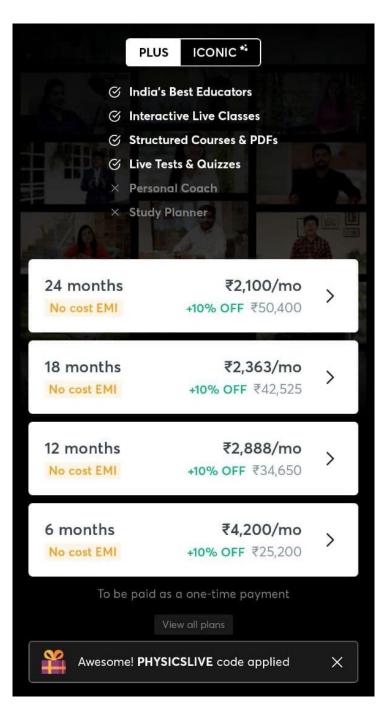


## P hysicsaholics




 $\begin{array}{l} \text{(c) } U_c > U_b > U_a \\ \text{(d) } U_C - U_b = 6 \ RT_0 \\ \end{array}$ 

# **Answer Key**


| Q.1 d  | Q.2 a,b,c    | Q.3 a | Q.4 c | Q.5 a  |
|--------|--------------|-------|-------|--------|
| Q.6 c  | Q.7 a,c,d    | Q.8 c | Q.9 b | Q.10 d |
| Q.11 a | Q.12 a,b,c,d |       |       |        |







Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.



# **Written Solution**

# DPP- 2 Thermodynamics- Internal energy By Physicsaholics Team

$$AD = \frac{1}{2} nR \Delta T$$

$$= \frac{3}{2} \left[ nRT_{g} - nRT_{H} \right]$$

$$= \frac{3}{2} \left[ V_{g} P_{g} - V_{H} P_{H} \right]$$

$$= \frac{3}{2} \left[ V_{g} P_{g} - V_{H} P_{H} \right]$$

$$= \frac{3}{2} \left[ Souxio \times 100 \times 10^{-6} - 200 \times 2500 \times 2500 \right]$$

$$= 0$$

$$ANS (d)$$

U=100J Rotational KE Tronglotional KE

ANS(9,6,C)

Wgas = PAV = 25 J  $\Delta U = \frac{f}{2} n R \Delta T = \frac{f}{2}$  $=\frac{6}{2}\times25$ ANS(a)

$$P = \alpha V \Rightarrow \frac{RT}{V} = \alpha V \Rightarrow T = \frac{\alpha V}{R}$$

$$U = \frac{1}{2} nR \left[ T_{S} - T_{C} \right] = \left( RT_{S} + RT_{C} \right) f_{A}$$

$$= \frac{1}{2} \left( \alpha V_{S}^{1} - \alpha V_{C}^{1} \right) = \left( \alpha V_{S}^{2} - \alpha V_{S}^{2} \right) \frac{1}{2}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} - \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} + \alpha V_{S}^{2} \right] f_{A}$$

$$= \left[ \alpha V_{S}^{1} + \alpha V_{S}^{2} + \alpha V_{S}^{2} \right] f_{A}$$

5)

$$U = \frac{f}{z} n R dT$$

$$= \frac{5}{2} x 5 \times 2 \times (20 - 10)$$

$$= 250 CoR$$

Any (a)

$$V = U_0 + \frac{f}{2} n RT$$

$$= U_0 + \frac{f}{2} pV$$

$$= V_0 + \frac{f}{2} pV$$

$$= V$$

ANS(c)

$$\Delta U = \frac{f}{2} n R U T = n (v U T) \text{ in any larocass}$$

$$\Rightarrow (a) \& (d) \text{ are (asyect)}$$

$$\text{In 180 thermal processs } U T = 0$$

$$\Rightarrow U = 0$$

$$U = \frac{f}{2} NRT$$

$$\Rightarrow \frac{dV}{dT} = \frac{f}{2} n R$$

ANS (C)

9) In 180baric process  $V \propto T$ 1, 9xothermod ''

In  $PV^{-1} = C \Rightarrow TV^{-2} = C$ In  $PV^{-2} = C \Rightarrow TV^{-3} = C$ 

hange in temperature 18 maximum in obtion (d)

Thange in internal anexago, ,, ,, ,

ANS(a)

$$| = 2 + 2 PV$$

but we Know that

$$V = V_0 + \frac{f}{z} n R T$$

Mixture of monogramic & Digtomic Since 3 (f < 5

ANS (d)

In 
$$DA$$
,  $\frac{P}{P} = Constant \Rightarrow PV = C$ 

$$\Rightarrow$$
  $\sqrt{}=+\sqrt{}$ 

$$T_{a} = T_{o} = \frac{P_{o}V_{o}}{NR}$$

$$T_{b} = \frac{4P_{o}V_{o}}{NR} = 4T_{o}$$

$$T_{c} = \frac{8P_{o}V_{o}}{NR} = 8T_{o}$$

$$V_{c} - V_{A} = \frac{1}{2}(NRT_{c} - NRT_{h})$$

$$V_{b} = \frac{3}{2}R(8T_{o} - T_{o}) = \frac{21}{2}RT_{o}$$

$$V_{b} = \frac{1}{2}(NRT_{c} - NRT_{h}) = \frac{3R}{2}R(4T_{o} - T_{o}) = 45RT_{o}$$

$$V_{c} = \frac{1}{2}(NRT_{c} - NRT_{b}) = \frac{3R}{2}(8T_{o} - 4T_{o}) = 6RT_{o}$$

# For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/60

Video Solution on YouTube:-

https://youtu.be/jWXHJMdv-3k

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/78













@Physicsaholics





@<u>IITJEE\_Physics</u>

physicsaholics.com

**Unacademy** 













# CUSIS NIKIS